
Release Duration and Enterprise Agility

Daniel R Greening
Evolve Beyond

dan@greening.org

Abstract
Short release duration—the time from starting

development until it delivers measurable value (i.e.,
paying customers adopt an upgrade)—is an implied
goal of agile methods. Release duration incorporates
the expensive parts of the value chain: build, test,
deploy and sell (but not exploratory design, for
example). Release duration correlates with technical
debt. Attempting to reduce release duration may help
drive agile behavior through a company. Finance
departments often collect release duration, helping a
company assess its agility.

Citrix Online illustrates how process
methodology, development group size and release
duration relate. Its adoption of Scrum and
Enterprise Scrum drove release duration down from
a peak of 41 months to less than 4, shorter than it had
as a small startup. Its market share rose during the
same period. Data from another company,
PatientKeeper, also seems to indicate that short
release durations correlate with more profitable
outcomes.

1. Introduction

Agile processes like Scrum help development
teams adapt to markets, gain engineering efficiency,
and forecast releases more accurately than traditional
waterfall processes. Software engineering is an
expensive and risky creative activity. While software
projects can generate dramatic returns when
successful, they often experience unanticipated
delays and have a high failure rate [char2005].

Short product development iterations (called
‘sprints’) are a hallmark of agile teams. Scrum teams
produce a releasable product at least once a month.
Agile coaches typically encourage teams to set
definitions of what “done” means for completed
features that increasingly approach the holy grail of
“delivering to the customer.”

Frequent deliveries, assuming that users can keep
up with new features and provide feedback, enable
product managers to better test market theories to
maximize profit. Steve Blank and Eric Ries
[blan2005][ries2011] pioneered an approach I call

“lean product management.” They assert product
managers can more accurately forecast value and
maximize profit by developing and delivering test
features that validate value assumptions, striving to
cheaply determine whether customers will pay for a
feature, respond to a marketing channel, fulfill
through a particular distribution channel, etc. When
these experiments validate an approach, product
managers can invest further in software development.
When experiments invalidate a market, product
managers can “pivot” development efforts to address
more promising opportunities.

Too frequent delivery might be disruptive for
lean product management. If release cycles are too
short, early-adopters can’t use the release and provide
feedback rapidly enough to affect later releases,
significant changes can disrupt user workflow, and a
release’s short operating time can mask errors that
take time to appear [cope2012]. These problems can
be resolved with some creativity in performing a
release. For example, in 2007 PatientKeeper was able
to deliver 45 releases to users. In most of those
releases, changes were incremental and non-
disruptive to PatientKeeper’s physician users. When
a release introduced major changes, PatientKeeper
would first deliver the release to a subset of users, get
feedback and then deploy to the rest [suth2012].

Frequent deliveries compel engineers and
designers to better identify and mitigate deployment
and usability problems. Traditional waterfall
approaches proceed from a design phase, to a
prototype phase, a development phase, a testing
phase, a deployment phase, and finally to a
maintenance phase. Design decisions or the nature of
the product itself can cause deployment or usability
problems that won’t appear until the product is
deployed or used. In some cases, these problems
could doom the product. Most companies would like
to know early if a product is doomed, so they could
spend their money on developing a more profitable
product. But long release durations can mask these
problems until after the company has squandered
funds on development.

Frequent deliveries can motivate engineers to
implement automated testing. Squeezing the release

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.463

4833

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.463

4835

process into short durations can force teams to
automate testing. Automated testing usually reduces
the long-term cost of testing: the cost of automated
testing amortized over multiple releases can be much
cheaper than manual testing. Automated testing
allows programmers to make more significant
architectural changes with less fear they will
introduce serious bugs. This accelerates development
of new features that might require pervasive code
changes (examples: internationalization, public APIs,
deployment on new devices, identity federation,
parallelization, fault-tolerance, etc.). In slowly
changing code bases (i.e., for a cash-cow product),
automated testing makes it possible to fix bugs for
customers at low-cost. Finally, some types of
integration tests can also be used as diagnostics for
running systems, increasing service reliability.

Frequent releases in online services can motivate
architects to implement high-availability
architectures. Frequent releases mean frequent
deployments, potentially disrupting users more often.
The lowest possible user disruption occurs when
users are migrated while running an old release to a
new release with no disruption at all. To achieve this,
one could use an active-active rolling upgrade
approach. Motivated to keep release duration low, I
designed an active-active rolling upgrade architecture
for Citrix Online’s first Scrum project. Citrix Online
later used the same approach for other products.

2. Technical Debt

“Technical debt” is perhaps the major factor that
causes release duration to increase. Ward
Cunningham coined the term to describe code that
remains when programmers sacrifice long-term
productivity for (perceived) short-term completion
speed. Here are some common examples:

1. Sometimes a programmer copies existing code,
pastes it somewhere else and modifies it to
satisfy a new requirement. In the short term, the
programmer has fewer worries about introducing
bugs into old code, and avoids having to write
new code.

Copy-paste technical debt can increase
future release duration. An existing bug could
have been copied from the original code,
creating a new bug in a different place. When a
user encounters one of the bugs, a programmer
might only repair only one. The cost of repairing
a bug after release is much higher than avoiding
bug creation or repairing the bug before release
[jone2009].

A copy-paste approach usually increases the
code size. If developers write unit tests, to
maintain the same level of code coverage, they
must write additional unit tests, build times will
increase and test maintenance costs will increase.

Instead, the programmer could have
refactored the original code to handle both
requirements, possibly using a shared method. If
a bug was retained from the original code, it will
likely continue to exist in a single place. The size
of the code is not likely to increase as much as it
would with copy-paste.

2. Sometimes different teams “fork” a code base in
a source code repository, essentially making two
copies of the code. They then make changes
independently, intending to merge them later
into a single copy. Programmers can then worry
less about conflicts in code changes, and avoid
delaying an impending release.

Code-fork technical debt can increase future
release duration. The theory that code changes
can be easily merged is often proven false. I’ve
actually never seen this approach work well. In a
different company, a team forked a code base
and then abandoned one of them when the
changes proved infeasible to merge, at a labor
cost of about $1 million.

The tendency to fork code often arises when
automated testing is not sufficient to assure
programmers that changes made by others won’t
disrupt their work.

3. Sometimes teams develop code without
corresponding automated behavior (black-box)
tests. Then, to ensure a high-quality release, the
code must be manually tested. Automated
behavior tests take time to develop, so
programmers seeking to release earlier or with
more features often believe that manual testing
will be faster (or just don’t like writing
automated tests).

Manual test technical debt can increase
future release duration. If programmers continue
to develop code they worked on in a previous
release, they can easily create bugs in
functionality that previously worked (called
“regression bugs”). Thus, on every subsequent
release many of the same manual tests must be
repeated, to ensure a quality release. Over time,
as functionality increases, the manual testing
time can easily eclipse the time for developing
new features, making release duration
unreasonably long.

48344836

For example, if a team develops code for a
new mobile device, it may reuse much of the
existing code (hopefully by refactoring, see
above), changing only what is necessary to
support the new device. However, even if very
little has changed, functionality on the old device
must be retested.

4. Sometimes customers ask to continue to use
older versions of products. Installing new
releases can disrupt users and can introduce new
bugs. When this occurs, companies must support
different versions.

Multi-version support is a form of technical
debt. When bugs are found in the most current
release, older releases may need to be checked
and fixed. With each additional version
supported, more work is required to fix any bug.
With each bug-fix release for each version,
regression testing may be required.

Developers have a few alternatives,
depending on their customers. They can use a
software-as-a-service model, so customers
always use the latest version. They can force
customers to upgrade before taking a support
call. But in some cases, the customer requires
long-term support for old versions; this will
increase release duration over time.

These examples illustrate the technical debt
concept. Programmers purchase short-term speed-ups
or customer advantage by increasing future release
durations. This approach parallels how some people
get into intractable credit card debt: they buy things
that improve their lives for the short term, while
mortgaging their future. Sometimes buying speed on
credit makes sense for developers, such as very early
in a startup company’s lifetime, when the market
hasn’t yet been proven; with proven markets where
competitors loom, technical debt can be much more
problematic.

Technical debt is one of the most prominent
reasons many companies have difficulty reducing
release duration while retaining the same quality.

3. Finance tracks release duration data

Teams themselves may not track how often their
work reaches a customer, but the finance department
likely does. Software development is a form of asset
creation. A company usually invests the most
development in a software project early in its
lifecycle. As long as operating environments don’t
change, the same software could earn revenues or

cost-savings over many years with few additional
expenses.

Finance departments typically track the dates
important to release duration. When a company starts
investing in software development, and before that
investment can start producing value, it starts
“capitalizing” the software development as an unused
asset. Once software goes into production and
earning money, a company then starts “depreciating”
the investment over the productive life of the
software, as an expense. The difference between
these two start dates, is the release duration.

Few agile companies release software to
customers after every team sprint. Larger companies
often have multiple teams working on a public
product release: combined testing, configuration and
deployment for the assembled work produced by
multiple collaborating teams may take time and
additional iterations. However, for all the reasons we
discussed, more frequent releases to customers can be
a strong indication of a healthier engineering group.

An example illustrates how financial tracking
neatly handles software development edge cases: A
company develops a software product as a free beta
product, delivers it to users and gets feedback. When
product development starts, the company starts
capitalizing the development cost as an investment.
Because it is not yet productive, neither earning nor
saving money, depreciation does not yet start. Only
when the product becomes productive would the
company start depreciating the asset.

This fits perfectly with the lean product
management approach, which encourages companies
to make users pay even for beta products. Requiring
payment in a beta release helps product managers
obtain more credible profitability forecasts for the
final product. Payment software issues can
insidiously damage profitability for companies, and
our definition of release duration can expose this
problem to the light of day.

4. Citrix Online

The development history of Citrix Online
demonstrates release duration as an agility metric.
Citrix Online began as a startup called ExpertCity in
2001. ExpertCity used waterfall methods to develop
screen-sharing and conferencing software. It offered
services to small and medium size businesses for a
monthly fee. In 2004, the company was acquired by
Citrix and became an independent subsidiary. It
institutionalized its waterfall approach as a RUP
variant.

48354837

I joined Citrix Online in 2007, and created its
first Scrum team. I developed an agile portfolio
management technique, called “Enterprise Scrum”, to
prioritize the company’s projects. We started using
Enteprise Scrum in late 2008 [gree2010]. I became
the head of Citrix Online’s Agile Program Office.
Two years later, in early 2011, almost all software
engineers in Citrix Online were operating under
Scrum and Enterprise Scrum, with 44 Scrum teams.

5. Release duration

Asked to demonstrate the benefits of agility to
others in Citrix Online, I worked with colleagues to
assemble release duration data through the
company’s history, from startup formation through
the end of 2010, and attempt to correlate the data
with process changes and organizational events.
Throughout its history, Citrix Online has retained its
own separate marketing, sales, product management,
engineering, finance and IT departments. This
independence has made historic analysis easier.

Figure 1. Release duration at different project midpoint dates

Figure 1 shows that ExpertCity’s first
software project took 10 months from
engineering team formation through customer
revenue. Its next release duration was shorter,
leveraging the functionality it had already built.
From that point, release duration gradually
increased over time, reaching a pre-acquisition
peak of 14 months from project inception to
customer revenue.

Citrix acquired ExpertCity between
December 2003 and March 2004, and named it
Citrix Online. The data point just prior to the
“Startup acquired” line is a project midpoint; this
project started before the acquisition and was
released after it. Much more rapid releases
followed this project, likely exploiting additional
resources injected into the company by its
acquirer. However, following the acquisition we
again see a trend that release duration gradually

increases over time. During this time, Citrix
Online formalized and implemented a RUP-
based waterfall project methodology [krol2003].
It did not seem to affect the trend.

I joined the company in October 2007
having some experience with agile techniques in
a previous company. One existing Citrix Online
project was attempting to merge agile and
traditional project methods, and the rest were
using waterfall. My team started a new software
project shortly after I joined, and we decided to
adopt pure Scrum.

Continued missed release targets from
waterfall projects, and positive results from agile
drove the company to hire Ken Schwaber to train
60 ScrumMasters in March 2008. After that
training, projects gradually moved to Scrum.

In October 2008, about half of Citrix
Online’s engineering teams were following

48364838

Scrum principles at least loosely, but upper-level
management did not yet completely embrace
agile principles. The engineering department
faced a long list of projects and pressure to work
on all of them. We were spreading engineering
talent thin and dragging out release duration.
Around this time, few projects were released that
gained customer revenue (revenue is a key
subtlety, there were non-paid betas released at
this time). The average release duration peaked
at 41 and 35 months, an alarming state that could
enable competitors to gain market share.

Figure 1 shows that, in organizationally
stable periods when waterfall methods were
used, release duration increased. This seems
likely due to the accumulation of technical debt.

6. An explicit focus on release
duration

In December 2008, we adopted Enterprise
Scrum [gree2010], established 3 months as the
desired maximum release duration, measured
engineering department velocity, and asked
upper management to restrict demands on
engineering to the top-priority projects. This
began an internally painful period for the
company, with much uncertainty and behavioral
changes.

It became clear that broad agile training
would be required to sustain an agile culture. My
team and I provided 2-day agile training in most

Citrix Online developer sites. By mid-2011, we
had trained 240 employees.

We changed two major aspects of Enterprise
Scrum in 2009 and 2010. First, we stopped
performing project reviews, retrospectives and
planning at a scheduled date every quarter. It was
disruptive to engineering staff to plan projects
every quarter, particularly when we were not
sufficiently agile to be certain that a quarterly
end-user release was possible. Instead, we
allowed projects to start and terminate any time.
This, unfortunately, made it more difficult to
thoughtfully track departmental velocity, but
reduced context-switching costs.

Second, we realized that many surprise
impediments occur within projects, which should
have been obvious up-front. We established
Project Ready Criteria to ferret out these dangers
before projects were approved, and monitor
project health while they were proceeding. We
developed a method of bulk-estimating a release
backlog, which helped teams identify high-risk
backlog items.

By the end of 2010, Citrix Online had driven
its average release duration to an average of 4
months. This effect was so dramatic that finance
staff members raised a concern that their
financial projections were rendered invalid: the
projections assumed revenue would begin 9
months following project inception, but revenues
were coming much faster. When we balanced
‘better adaptation to the market’ against ‘more
predictable depreciation’, adaptation won.

Figure 2. Web Conferencing Market Share, 2009 and 2010

48374839

7. Outcomes

In 2008, Citrix Online was #3 in web
conferencing market share, at 12%. Figure 2
shows that Citrix Online lapped Microsoft Live
Meeting from 2008 through 2010, to become #2,
and has begun eroding Cisco Webex’s market
[fros2011][cox2012]. Citrix Online’s adoption of
agile methods has dramatically reduced its
release duration, and points to a bright future.

Correlation is not causation; this report
cannot prove that short release duration helps
lead to higher market share. However, similar
anecdotal stories appear. Jeff Sutherland (an
inventor of Scrum) was CTO of PatientKeeper
from 2000 through mid-2008. PatientKeeper’s
annual revenues rose 400% in 2007, the same
year it delivered 45 releases. After Sutherland
left the company, PatientKeeper reverted to
waterfall and its yearly revenues dropped 50%
[suth2012].

8. Conclusion

Managers often claim that startups are
naturally agile, but the data given here show
startups can rapidly accumulate technical debt,
extending their release duration, reducing
revenue and increasing cost.

Hiring more engineers can temporarily drive
release duration down, at least for small teams.
However, without conscious effort, technical
debt may then continue to increase, with
unfortunate consequences.

A conscious intent to reduce release duration
seems to help improve adoption of agile
techniques through a company. Three years from
its adoption of agile methods and Enterprise
Scrum, Citrix Online has driven average release
duration from a peak of 41 months to below 4
months, lower than it was when it was an early
stage startup. Citrix Online more rapidly adopted
agile methods than any other large multi-product
company I’ve encountered.

Release duration is a useful agility metric. It
can be easily computed from financial data that
many software companies track. It has been
correlated with important agility events at Citrix
Online. Increasing release duration could point to
accumulating technical debt, lurking in a
company’s code base.

9. References

[blan2008] Steve Blank, Four Steps to the
Epiphany, Cafepress.com (Feb 1,
2005). ISBN 978-0976470700.

[busc2011] Frank Buschmann, To Pay or Not
to Pay Technical Debt, IEEE
Software, November/December
2011 (Vol. 28, No. 6) pp. 29-31.

[char2005] Robert N. Charette,"Why software
fails," Spectrum, IEEE , vol.42,
no.9, pp. 42- 49, Sept. 2005, doi:
10.1109/MSPEC.2005.1502528,
http://ieeexplore.ieee.org/stamp/sta
mp.jsp?tp=&arnumber=1502528&i
snumber=32236

[cohn2005] Mike Cohn, Agile Estimating and
Planning, ISBN 978-0131479418,
Prentice-Hall 2005.

[cope2012] James Coplien, personal
communication, 8 Jan 2012.

[cox2012] Dave Cox and Barbara Sanner,
Industry Buying Plans & Trends
for 2012: Social Learning, Video
Training, Mobile Learning and
Web Conferencing, Cox eLearning
Consultants (January 2012).

[cunn1992] W. Cunningham, “The WyCash
Portfolio Management System,”
Addendum to Proc. Object-
Oriented Programming Systems,
Languages, and Applications
(OOPSLA 92), ACM Press, 1992,
pp. 29–30,
doi:10.1145/157709.157715.

[fros2011] Frost and Sullivan, Analysis of the
Global Web Conferencing Market,
30 Sept 2011,
http://www.frost.com/prod/servlet/r
eport-toc.pag?repid=N9D0-01-00-
00-00.

[gree2010] Daniel Greening, “Enterprise
Scrum: Scaling Scrum to the
Enterprise Level,” 2010 43rd
Hawaii International Conference on
System Sciences (HICSS), Hawaii
January 5-8, ISBN: 978-0-7695-
3869-3 (10 pages),
http://www.computer.org/plugins/d
l/pdf/proceedings/hicss/2010/3869/
00/10-01-01.pdf

[krol2003] Per Kroll and Philippe Kruchten,
The Rational Unified Process Made
Easy: A Practitioner's Guide to the
RUP, Addison-Wesley Professional
(2003).

48384840

[ries2011] Eric Ries, The Lean Startup, Crown
Business (September 13, 2011),
ISBN 978-0307887894.

[suth2012] Jeff Sutherland, personal
communication, 8 Jan 2012.

48394841

